Discrete harmonic analysis associated with Jacobi expansions I: The heat semigroup

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized traces and Taylor expansions for the heat semigroup

We study heat trace asymptotics for Schrödinger operators using commutator expansions due to Agmon-Kannai and Melin. Closed formulas for coefficients of the scattering phase asymptotics in the short-range case are presented. In the long-range case, following Melin, we consider regularized traces and compute coefficients in their asymptotic expansions. These can be thought of as heat invariants ...

متن کامل

new semigroup compactifications via the enveloping semigroups of associated flows

this thesis deals with the construction of some function algebras whose corresponding semigroup compactification are universal with respect to some properies of their enveloping semigroups. the special properties are of beigan a left zero, a left simple, a group, an inflation of the right zero, and an inflation of the rectangular band.

15 صفحه اول

Periodic Jacobi-Perron expansions associated with a unit

We prove that, for any unit in a real number fieldK of degree n+ 1, there exits only a finite number of n-tuples in K which have a purely periodic expansion by the Jacobi-Perron algorithm. This generalizes the case of continued fractions for n = 1. For n = 2 we give an explicit algorithm to compute all these pairs.

متن کامل

Semigroup Expansions for Autobiographic

Semigroups (algebras of time) and their expansions (algebras of histories) are applied to problems of historical grounding and story-telling for situated agents.

متن کامل

Noncommutative Harmonic Analysis on Semigroup and Ultracontractivity

We extend some classical results of Cowling and Meda to the noncommutative setting. Let (Tt)t>0 be a symmetric contraction semigroup on a noncommutative space Lp(M), and let the functions φ and ψ be regularly related. We prove that the semigroup (Tt)t>0 is φ-ultracontractive, i.e. ‖Ttx‖∞ ≤ Cφ(t)‖x‖1 for all x ∈ L1(M) and t > 0 if and only if its infinitesimal generator L has the Sobolev embeddi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2020

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2020.123996